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1. Introduction

It is known that to a noncommutative geometry one can associate in various ways a grav-

itational field. This can be elegantly done [1, 2] in the imaginary-time formalism and

perhaps less so [3] in the real-time formalism. We examine here the inverse problem, that

of associating a noncommutative geometry to a given classical field. As concrete examples,

one would like to know to what extent it is possible to give a noncommutative extension

of the Schwarzschild metric or of a cosmological metric. We would also like to know how

many extensions there are and what their properties. There have been examples con-

structed [4 – 6] more-or-less ad hoc; we give here a more systematic analysis by restricting

our considerations to the ‘semi-classical’ theory, retaining only contributions of first-order

in the noncommutativity parameter. As a working hypothesis we shall suppose that there

is one physical property, which at large scales manifests itself as gravity and at small scales

as noncommutativity.
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When a noncommutative geometry is considered to lowest order the commutativity

relations define a symplectic form; the metric defines also a curvature. We examine the

relation between these two structures which are imposed by the requirements of noncom-

mutative geometry. We show that in certain simple situations the field ‘almost’ determines

the structure of the algebra as well as the differential calculus. Over a given algebra there

can be many differential calculi but all must satisfy certain consistency conditions before

they can be considered as associated to the algebra. We are therefore interested in the

cases where these relations determine the field. We shall consider almost exclusively the

almost-commutative limit. We shall also briefly consider a sort of modified form of the

background-field approximation in which we suppose that to the structure of a noncom-

mutative algebra and associated differential calculus there has been associated a geometric

structure and we proceed so to speak by induction to extend the correspondence to a

first-order perturbation.

As a measure of noncommmutativity, and to recall the many parallelisms with quan-

tum mechanics, we use the symbol k̄, which will designate the square of a real number

whose value could lie somewhere between the Planck length and the proton radius m−1
P .

Although this is never explicitly used we shall think rather of the former and identify k̄

with Newton’s constant GN (in units with ~ = 1). This becomes important when we con-

sider perturbations. We introduce a set Jµν of elements of an associative algebra A and

use them to define commutation relations

[xµ, xν ] = ik̄Jµν(xσ). (1.1)

The Jµν are of course restricted by Jacobi identities; we see below that there are two other

natural requirements which also restrict them.

Let µ be a typical ‘large’ source mass with ‘Schwarzschild radius’ GNµ. If noncommu-

tativity is not directly related to gravity then it makes sense to speak of ordinary gravity

as the limit k̄ → 0 with GNµ non vanishing. On the other hand if noncommutativity and

gravity are directly related then both should vanish with k̄. The two points of view are not

at odds provided one considers (classical) gravity as a purely macroscopic phenomenon,

valid only for ‘large’ masses. We shall use the dimensionless parameter

ε = k̄µ2 (1.2)

as a measure of the relative importance of noncommutative effects. We shall also use the

WKB formalism to illustrate the close relation which exists between Jµν and the geometry

of the wave. The WKB approximation is a classical description of quantum mechanics

in the sense that derivations can be identified with the momenta. We shall show that in

the presence of the wave Jacobi identities require a modification of the structure of the

algebra. Let ω be the characteristic mass scale associated with the wave. We shall require

the inequalities √
k̄ ¿ ω−1 ¿ µ−1. (1.3)

If we consider k̄ to be of the order of the Planck mass then the first inequality states that the

Planck mass is ‘large’; the second is the definition of what is meant by a ‘high-frequency’

wave.
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The extra momenta pα which must be added to the algebra in order that the derivations

be inner stand in duality to the position operators xµ by the relation

[pα, xµ] = eµ
α. (1.4)

The right-hand side of this identity defines the gravitational field. The left-hand side

must obey Jacobi identities. These identities yield relations between quantum mechanics

in the given curved space-time and the noncommutative structure of the algebra. The

three aspects of reality then, the curvature of space-time, quantum mechanics and the

noncommutative structure of space-time are intimately connected. We shall consider here

the even more exotic possibility that the field equations of general relativity are encoded

also in the structure of the algebra so that the relation between general relativity and

quantum mechanics can be understood by the relation which each of these theories has

with noncommutative geometry.

In spite of the rather lengthy formalism the basic idea is simple. We start with a

classical geometry described by a moving frame θα and we associate

θα ρ−→ Jµν (1.5)

to it a noncommutative algebra with generators xµ and commutation relations (1.1) which

we identify with position space. To this algebra we add the extra elements which are

necessary in order that the derivations become inner; this is ordinary quantum mechanics.

The new element is that the consistency relations in the algebra as Jacobi identities largely

restrict θα and Jµν . More details of the map (1.5) will be given in Section 4.

Typically one would proceed in three steps. First choose a moving frame to describe

a metric. Quantize it by replacing the moving frame by a frame, as described below.

The important special cases referred to above would include those frames which could be

quantized without ordering problems. Finally one looks for a noncommutative algebra

consistent with the resulting differential calculus; this is the image of the map (1.5). Let

eα be dual to the left-hand side of (1.5). If we quantize as in (1.4) by imposing the rule

eα 7→ pα (1.6)

then from the Jacobi identities we find

[pα, Jµν ] = [x[µ, [pα, xν]]]. (1.7)

If the space is flat and the frame is the canonical flat frame then the right-hand side vanishes

and it is possible to consistently choose the expression Jµν to be equal to a constant. On

the other hand if the space is curved the right-hand side does not vanish identically except

in the trivial case Jµν = 0. However the map (1.5) is not single valued for any constant J

has flat space as inverse image.

The physical idea we have in mind has been given elsewhere [7 – 9]. One can use

a solid-state analogy and think of the ordinary Minkowski coordinates as macroscopic

order parameters obtained by ‘coarse-graining’ over regions whose size is determined by
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a fundamental area scale k̄, which is presumably, but not necessarily, of the order of the

Planck area G~. They break down and must be replaced by elements of a noncommutative

algebra when one considers phenomena on smaller scales. A simple visualization is afforded

by the orientation order parameter of nematic liquid crystals. The commutative free energy

is singular in the core region of a disclination. There is of course no physical singularity;

the core region can simply not be studied using the commutative order parameter.

There is also a certain similarity with the effect of screening in quantum field theory

and in plasma physics. One can consider a ‘point’ as surrounded by a ‘cloud of void’

which ‘screens’ it from neighbouring ‘points’. Because the commutator defines in the

commutative limit an antisymmetric tensor field there are obvious analogies with spin and

with the electromagnetic field; we have not however found any particularly fruitful insights

using these. In the limit when the gravitational field vanishes there still remains a definite

frame at each point defined, for example, by the Petrov vectors. So even in flat space, if

considered as the result of such a limiting process, local Lorentz invariance is broken. This

residual memory could be considered to be similar to that invoked in Mach’s principle.

Other reasons have been proposed [10] for this breaking.

A detailed description of the method we shall use has been given in a previous arti-

cle [11] and it suffices therefore here to outline the prescription. We suppose that a complete

consistent noncommutative geometry has been given. By this we mean that the frame and

the commutation relations are explicitly known. We shall perturb both the geometry and

the algebra and show that the perturbation of the one can be intimately related with that

of the other such that the resulting geometry is consistent. The fact that the geometry

depends only on the formal algebraic structure of the algebra, seemingly independent of the

representation is perhaps due to the fact that only first-order perturbations are explicitly

calculated. Although one cannot claim to have defined completely an algebra without a

choice of state, we have not found it necessary to use a concrete representation in the cal-

culations we have presented here. This is certainly related to the fact that most concrete

calculations are presented only in the quasi-classical approximation. Although noncom-

mutative ‘gravity’ in the Kaluza-Klein sense had been investigated earlier [7, 12] it would

seem that the first concrete example of noncommutative ‘gravity’ was [13] an extension

of the 2-sphere. Although not very interesting as a realistic example of gravity it clearly

illustrates the relation between the commutation relations and the effective classical grav-

itational field. There have been several recent investigations of the same subject, at least

two of which [14, 15] are not far in spirit from the present calculations.

2. General considerations

Let then A be a noncommutative ∗-algebra generated by four hermitian elements xµ which

satisfy the commutation relations (1.1). Assume that over A is a differential calculus

which is such [9] that the module of 1-forms is free and possesses a preferred frame θα

which commutes,

[xµ, θα] = 0, (2.1)
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with the algebra. The space one obtains in the commutative limit is therefore parallelizable

with a global moving frame θ̃α defined to be the commutative limit of θα. We can write

the differential

dxµ = eµ
αθα, eµ

α = eαxµ. (2.2)

The algebra is defined by a product which is restricted by the matrix of elements Jµν ;

the metric is defined, we shall see below, by the matrix of elements e
µ
α. Consistency

requirements, essentially determined by Leibniz rules, impose relations between these two

matrices which in simple situations allow us to find a one-to-one correspondence between

the structure of the algebra and the metric. The input of which we shall make the most

use is the Leibniz rule

ik̄eαJµν = [eµ
α, xν ] − [eν

α, xµ]. (2.3)

One can see here a differential equation for Jµν in terms of e
µ
α. In important special cases

the equation reduces to a simple differential equation of one variable.

The relation (2.3) can be written also as Jacobi identities

[pα, [xµ, xν ]] + [xν , [pα, xµ]] + [xµ, [xν , pα]] = 0 (2.4)

if one introduce the momenta pα associated to the derivation by the relation (1.4).

Finally, we must insure that the differential is well defined. A necessary condition is

that d[xµ, θα] = 0. It follows that

d[xµ, θα] = [dxµ, θα] + [xµ, dθα] = e
µ
β[θβ, θα] − 1

2 [xµ, Cα
βγ ]θβθγ. (2.5)

We have here introduced the Ricci rotation coefficients Cα
βγ . We find then that multipli-

cation of 1-forms must satisfy

[θα, θβ] = 1
2θ

β
µ[xµ, Cα

γδ]θ
γθδ. (2.6)

Consistency requires then that

θ[β
µ [xµ, Cα]

γδ] = 0. (2.7)

We have in general three consistency equations which must be satisfied in order to obtain

a noncommutative extension. They are the Leibniz rule (2.3), the Jacobi identity and

the condition (2.7) on the differential. The first two constraints follow from Leibniz rules

but they are not completely independent of the differential calculus since one involves the

momentum operators.

To illustrate the importance of the Jacobi identities we mention that they force a

modification of the canonical commutation relations and introduce a dependence

~δµ
α 7→ ~eµ

α (2.8)

of Planck’s ‘constant’ on the gravitational field. We mentioned already that if one place the

canonical commutator (1.4) in the Jacobi identity with two coordinate and one momentum

entry that for this to be consistent the coordinates in general cannot commute.
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3. Linear perturbations of flat space

If we consider the Jµν of the previous sections as the components of a classical field on a

curved manifold then in the limit when the manifold becomes flat the ‘equations of motion’

are Lorentz invariant. We notice however that in this limit they are also degenerate. In

particular solutions of the form (5.7) are unacceptable. To remedy this we suppose that as

eλ
α → eλ

0α we obtain

Jµν → J
µν
0 , det J0 6= 0. (3.1)

Were we to choose eλ
0α to be a flat frame then the assumption would mean that J

µν
0

‘spontaneously’ breaks Lorentz invariance. Since Lorentz invariance is broken for every

non-flat frame by definition, it would be a stronger assumption to suppose that J
µν
0 = 0.

We shall now consider fluctuations around a particular given solution to the problem

we have set. We suppose that is we have a reference solution comprising a frame eλ
0α = δλ

α

and a commutation relation J
µν
0 which we perturb to

Jαβ = J
αβ
0 + εIαβ , eµ

α = δ
µ
β(δβ

α + εΛβ
α). (3.2)

In terms of the unknowns I and Λ the Jacobi and Leibniz constraints become respectively

ελµνσ [xλ, Iµν ] = 0, (3.3)

eαIµν = [Λµ
α, xν ] − [Λν

α, xµ]. (3.4)

We now use the fact, well known from quantum mechanics, that when the value of the

commutator is a constant then the commutator is a derivative. That is, for any f

[xλ, f ] = ik̄Jλσ
0 ∂σf + o(ε2), [pα, f ] = ∂αf + o(ε2). (3.5)

The two constraint equations become

ελµνρJ
λσ∂σIµν = 0, (3.6)

eαIµν = ∂σΛ[µ
α J

σν]
0 . (3.7)

These two equations are the origin of the particularities of our construction, they and the

fact that the ‘ground-state’ value of Jµν is an invertible matrix.

The constraint equations become particularly transparent if one introduce the new

unknowns

Îαβ = J−1
0αγJ−1

0βδI
γδ, Λ̂αβ = J−1

0βγΛγ
α. (3.8)

We decompose also Λ̂ as the sum

Λ̂αβ = Λ̂+
αβ + Λ̂−

αβ (3.9)

of a symmetric and antisymmetric term. The constraints become

eα(Î + Λ̂−)βγ + (eαΛ̂−
βγ + eβΛ̂−

γα + eγΛ̂−
αβ) = e[βΛ̂+

γ]α, (3.10)

εαβγδeα(Î + 2Λ̂)βγ = 0. (3.11)
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We introduce

Î =
1

2
Îαβθαθβ, Λ̂− =

1

2
Λ̂−

αβθαθβ. (3.12)

The constraints simplify to ‘cocycle’ conditions. If we multiply (3.10) by εαβγδ we obtain

εαβγδeα(Î + 4Λ̂−)βγ = 0. (3.13)

It follows then that

dΛ̂− = 0, dÎ = 0. (3.14)

We can rewrite (3.10) as

eα(Î + Λ̂−)βγ = e[βΛ̂+
γ]α. (3.15)

This equation has the integrability conditions

eαe[βΛ̂+
γ]δ − eδe[βΛ̂+

γ]α = 0. (3.16)

But the left-hand side is the linearized approximation to the curvature of a metric with

components gµν + εΛ̂+
µν . If it vanishes then the perturbation is a derivative; for some

1-form A

Λ̂+
βγ =

1

2
e(βAγ). (3.17)

Equation (3.15) becomes therefore

eα(Î + Λ̂− − dA)βγ = 0. (3.18)

It follows then that for some 2-form c with constant components cβγ

Λ̂− = −Î + dA + c. (3.19)

The remaining constraints are satisfied identically. The most important relation is equa-

tion (3.19) which, in terms of the original ‘unhatted’ quantities, becomes

Λα
β = J−1

0βγIαγ + J
αγ
0 (cβγ + eβAγ). (3.20)

This condition is much weaker than, but similar to equation (5.6).

4. The algebra to geometry map

We can now be more precise about the map (1.5). Let θα be a frame which is a small

perturbation of a flat frame and let Jαβ be the frame components of a small perturbation

of a constant ‘background’ J0. Us interests the map

Iαβ σ−→ Λα
β = J−1

0βγIαγ + J
αγ
0 (cβγ + eβAγ). (4.1)

We recall that we are considering only first-order fluctuations around a given frame and

that these fluctuations are redundently parameterized by the array Λα
β . We can rewrite the

map ρ as a map

Λα
β

ρ−→ Iαβ. (4.2)

It can be defined as an inverse of the map σ defined in equation (4.1).
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If we neglect all terms which are gradients then we see that the extension of σ to the

metric is given by

gαβ = g
αβ
0 − εhαβ , hαβ = Λ(αβ) = J

(αγ
0 Îγ

β). (4.3)

We recall that a perturbation of a frame

eµ
α = e

µ
0β(δβ

α + εΛβ
α) (4.4)

engenders a perturbation

gµν = g
µν
0 − εhµν , hµν = Λ(µν) (4.5)

of the metric.

There is a certain ambiguity in the map σ defined in (4.1). This must be so since over

any associative algebra there are many differential calculi. As an example of this one can

consider the case of constant commutators. The two key formulae are

θα = θα
0 − εΛα

βθ
β
0 , Jµν = J

µν
0 (4.6)

The momenta are linear functions of the position and there is but one calculus based on

the derivations associated to the momenta. It is given by the duality relations

dxµ(eα) = [pα, xµ] = δµ
α. (4.7)

So amongst the set of differential calculi there is one which is based on the derivations

defined by the momenta. This is the one which we define to be the image of σ.

Suppose we were to chose another ‘nearby’, based on the frame

θα = dxα − εΛα
βdxβ (4.8)

and defined by some matrix Λα
β . We use the fact that the formulae of Section 3 remain

valid but with the extra condition that I = 0. In particular, from equations (3.19) we find

that the 2-form Λ̂ is a coboundary. It does not contribute to the Riemann tensor. So the

perturbed differential calculus engenders a trivial perturbation of the metric. This result is

difficult to understand intuitively since one would expect the metric components to change

if the symmetric part Λ(αβ) of Λαβ does not vanish. However the Jacobi identities force

Λ(αβ) to be the symmetric gradient of a 1-form A; it therefore does not contribute to the

Riemann tensor.

5. Phase space

It is obviously the case that in the commutative limit the 4 coordinate generators tend

to the space-time coordinates and the 4 momenta tend to the conjugate momenta. The

8 generators become the coordinates of phase space. For this to be consistent all Jacobi

identities must be satisfied, including those with two and three momenta. We consider first

the identities

[pα, [pβ , xµ]] + [pβ, [xµ, pα]] + [xµ, [pα, pβ ]] = 0. (5.1)

– 8 –
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One easily see that, using the identities (3.14) and (3.17) as well as the assumption that

the center is trivial we find that

ik̄[pα, pβ] = (K − ε(Λ̂ − dA))αβ = (K + εÎ)αβ (5.2)

with

K = −J−1
0 . (5.3)

That is,

ik̄[pα, pβ] = −J−1
αβ + o(ε2). (5.4)

The remaining identities, involving only the momenta, are then satisfied by virtue of the

fact that the 2-form Λ̂ is closed. There is evidence to the fact that this relation is valid to

all orders in ε.

From the Jacobi identities we find that

[pα − J−1
0αµxµ, xν ] = δν

α − J−1
0αµ(Jµν

0 + εIµν) + εΛν
α = ε(Λν

α − J−1
0αµIµν) = 0. (5.5)

For some set of constants cα therefore, if the center of the algebra is trivial, we can write

ik̄pα = J−1
0αµxµ + cα. (5.6)

The ‘Fourier transform’ is linear.

Let J
µα
0 be an invertible matrix of real numbers. For each such matrix there is an

obvious map from the algebra to the geometry given by

Jµν 7→ eν
α = J−1

0αµJµν . (5.7)

For such frames we introduce momenta pα and find that

[pα, xν ] = eν
α = J−1

0αµJµν = (ik̄)−1J−1
0αµ[xµ, xν ]. (5.8)

That is

[ik̄pα − J−1
0αµxµ, xν ] = 0. (5.9)

We can conclude therefore that (5.6) is satisfied. We can interpret the results of the

previous section as the statement that this condition is stable under small perturbations

of the geometry or algebra.

6. An Example

Consider (2 − d)-Minkowski space with coordinates (t, x) which satisfy the commutation

relations [t, x] = ht and with a geometry encoded in the frame θ1 = t−1dx, θ0 = t−1dt.

These data describe [9] a noncommutative version of the Lobachevski plane. The region

around the line t = 1 can be considered as a vacuum. For the approximations of the

previous section to be valid we must rescale t so that in a singular limit the vacuum region

becomes the entire space. We can do this by setting

t = 1 + ct′ (6.1)
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and consider the limit c → 0. So that the geometry remain invariant we must scale the

metric. We do this by rescaling θ0

θ0 7→ c−1θ0. (6.2)

The commutation relations become then

[t′, x] = c−1h + ht′ (6.3)

and to leading order in c the frame becomes

θ0 = (1 − ct′)dt′, θ1 = (1 − ct′)dx. (6.4)

From the definitions (3.2) we find that

J01
0 = c−1h, εI01 = ht′,

J0,01 = −ch−1, εΛα
β = ct′δα

β

(6.5)

and therefore we obtain the map σ as defined in the previous section. This example is not

quite satisfactory since the cocycle conditions (3.14) are vacuous in dimension two.

7. The WKB ansatz

We now suppose that the algebra A is a tensor product

A = A0 ⊗Aω (7.1)

of a ‘slowly-varying’ factor A0 in which all amplitudes lie and a ‘rapidly-varying’ phase

factor which is of order-of-magnitude ε so that only functions linear in this factor can

appear. The generic element f of the algebra is of the form then

f(xλ, φ) = f0(x
λ) + εf1(x

λ)eiωφ (7.2)

Because of the condition on ε these elements form an algebra. We suppose that both Λ

and I belong to Aω. We introduce the normal ξα = eαφ to the surfaces of constant phase.

From (3.19) we find that

Λ̂−
αβ = −Îαβ + ξ[αAβ] (7.3)

The 2-form Λ̂− is, to within a constant, a plane-wave-type solution to Maxwell’s equations.

The expression for the metric becomes

hαβ = J−1
0δγIγ(αηβ)δ + ξ(αJ

β)γ
0 Aγ . (7.4)

The Riemann tensor in the limit we are considering, given by the expression

Rαβγδ =
1

4
εξ[αḧβ][γξδ], (7.5)

depends only on the first term, linear in I. We have defined therefore a map

Iαβ 7→ Rα
βγδ (7.6)

from the algebra to the geometry. Although there is a certain amount of ambiguity in the

definition of the map as far as the components of the metric are concerned, this ambiguity

drops from the curvature. In Section 4 we showed that all possible perturbations of the

differential calculi, except for the one which we have chosen, leave the curvature invariant.
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8. Dispersion relations

The Ricci tensor for the perturbation hµν to a flat metric is given by

Rαβ = −1

4
εω2(ξ2hαβ − ξγhγ(βξα) + hγ

γξαξβ). (8.1)

From equation (7.4) we see then that it is a linear expression in the perturbation Iµν to

the commutation relations. The Einstein tensor for the perturbation is given by

Gαβ = −1

4
εω2(ξ2h̄αβ + h̄γδξ

γξδgαβ − ξγ h̄γ(βξα)) (8.2)

in terms of

h̄αβ = hαβ − 1

2
hγ

γgαβ (8.3)

From equation (7.4) we see then that both are linear expressions in the perturbation Iµν

to the commutation relations. The vacuum field equations are given by

ξ2h̄αβ − ξγh̄γ(αξβ) + h̄γδξ
γξδgαβ = 0. (8.4)

We require a plane-wave-like solution to the condition (3.14), one which is not the dif-

ferential of a 1-form. Wave-front surfaces are 2-surfaces and on such surfaces non-trivial

2-forms can exist. This is however very formal since the surfaces in question are noncom-

pact. Within the context of the WKB approximation one can distinguish between exact

and non-exact closed 2-forms. If Î has frame components

Îαβ = Î0αβeiωφ (8.5)

then the differential has to leading order the components

(dÎ)αβγ = iω(ξαÎβγ + ξβ Îγα + ξγ Îαβ). (8.6)

An example of a solution is

Îαβ =
1

2
εαβγδ Î

∗γδ (8.7)

with

Î∗γδξδ = 0. (8.8)

It follows from (8.6) that if we multiply the cocycle condition dÎ = 0 by ξα we obtain

ξ2Îαβ + ξγ Îγ[αξβ] = 0. (8.9)

This equation is very similar in structure to (8.4) and contains the essential information

of the latter. From it one can read off the dispersion relations. One sees that either Î is

exact, that is the metric perturbation is non-radiative, or ξ2 = 0. We discuss some of the

details of this in the Appendix.
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9. Nonlinearities

Aided by a simplifying assumption, one can readily include the effects of the higher-order

terms neglected in the previous calculations. Let Jµν(z, z̄) be an arbitrary antisymmetric

matrix whose elements belong to the subalgebra generated by two elements z and z̄ of four

xµ. Suppose further that [z, z̄] = 0 so that the subalgebra is abelian and to be explicit

suppose that z = x3 + x0 and that z̄ = x3 − x0. To be consistent then we must suppose

further that J03 = 0. Let Jµα be an arbitrary invertible matrix of complex numbers.

Reality conditions, which we shall examine in more detail in a future publication force Jµα

to be a real matrix to lowest order. We define the geometry such that

[pα, xµ] = eµ
α = J−1

ασ Jσµ. (9.1)

The notation is consistent since it follows that

Jσµ = Jσαeµ
α. (9.2)

Define now the commutators to be

[xµ, xν ] = ik̄Jµν (9.3)

This will be consistent provided the Jacobi identities

ελµνρJ
λαeαJµν = 0 (9.4)

are satisfied. We shall return to this equation later. It follows immediately that the Leibniz

identities (2.3) are satisfied.

Define finally

ik̄[pα, pβ] = −J−1
αµ e

µ
β. (9.5)

The Lie algebra generated by the 8 elements is a consistent Lie algebra provided the initial

Jacobi identities are satisfied. The same logic as that which lead to the dispersion relation

in Section 8 leads here to the conclusion that the matrix of commutators must be a function

only of z (or z̄) and that the normal to the surface z = z0 must be a null vector. Under

Wick rotation the matrix Jµν would become a matrix of analytic functions.

10. Recapitulation

In previous publications [9] we have shown that to a noncommutative algebra defined by a

commutator Jµν and a differential calculus defined by a frame θα one can associate (almost)

a unique geometry defined by metric and connection. The question of exactly what part of

the information in the curvature tensor comes from the commutator and which part from

the frame remains open. One might conjecture that if the couple (Jµν , θα) defines one

geometry with curvature map Curv(Jµν , θα) and the couple (Jµν , θ′α) a second geometry

with curvature map Curv(Jµν , θ′α) then one has

Curv(Jµν , θ′α) = Curv(Jµν , θα). (10.1)

There are counter-examples to this conjecture; it is not true.
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A weaker conjecture is that (10.1) is valid if the second frame is a small perturbation

θ′α = θα − εΛα
βθβ (10.2)

of the first. A yet weaker conjecture is that the equality (10.1) is valid if the commutator

is constant Jµν = J
µν
0 and the initial frame is the exact frame θα = dxα. We have shown

that this is in fact true. Furthermore we have shown that if the commutator is perturbed

to Jµν = J
µν
0 + εIµν and the frame θα is consistently perturbed to θ′α then one has the

equality

Curv(Jµν , θ′α) = Curv(Iµν). (10.3)

In other words the perturbation of the Riemann map depends only on the perturbation I

of J0 and not on its extension to the frame.

A second point which we have investigated is the status of the field equations. In the

‘simplest’ cases it would seem to be true that the frame is dual to a set of derivations

eα of the algebra and that these derivations are inner with associated momenta pα. It

would seem then that the theory contains only four dynamical degrees of freedom. This

is precisely the number of degrees of freedom of the conformal tensor (in dimension four).

One could conjecture then that the Ricci tensor is fixed and calculable. We have shown

this to be the case if the algebra is a high-frequency perturbation of a flat background.

We have derived a relation between the structure of an associated algebra as defined

by the right-hand side J of the commutation relations between the generators xµ on the

one hand and the metrics which the algebra can support, that is, which are consistent with

the structure of a differential calculus over the algebra on the other. We have expressed

this relation as the map (1.5) from the frame to J which defines the algebra. The essential

ingredients in the definition of the map are the Leibniz rules and the assumption (2.1) on

the structure of the differential calculus. Although there have been found [16, 17, 4, 6]

numerous particular examples, there is not yet a systematic discussion of either the range

or kernel of the map. We have here to a certain extent alleviated this, but only in the

context of perturbation theory around a vacuum and even then, only in the case of a high-

frequency wave. A somewhat similar relation has been found [18] in the case of radiative,

asymptotically-flat space-times.

11. Conclusion

We started with a consistent flat-space solution to the constraints of the algebra and of the

geometry, a solution with the unusual property that its momenta and position stand in a

relation of simple duality, a consequence of which is the fact that the Fourier-transformation

is local. We then perturbed both structures, the geometric and the algebraic, in a seemingly

arbitrary manner, but within the context of linear-perturbation theory and requiring that

the constraints remain valid. We were able to completely solve the constraints of the

perturbation and exhibit a closed solution, which in the WKB situation, implied that the

Ricci tensor was necessarily flat. However the seemingly general solutions we started with

turned out, all of them, to satisfy the simple duality of the original solution, a fact which
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would tend to indicate that they were not really sufficiently general. So whereas at best

have presented a solid indication that in the noncommutative context we have been persuing

the Ricci tensor can be considered as calculable; at least we have indicated an interesting

set of solutions to the algebro-geometic problem which have the duality property of the

original flat-space.

A. WKB cohomology

We briefly motivate here the notation used in Section 8. We introduced the algebra of

de Rham forms with a different differential inspired from the WKB approximation. The

differential can be introduced for all forms but we give the construction only for the case

of 2-forms. Let fαβ be a 2-form and define the differential dξ of f by the Formula (3.14).

The interesting point is that the rank of the cohomology module H2, an elementary form

of Spencer cohomology, depends on the norm of ξ. Let c be a 2-cocycle. Then

ξαcβγ + ξβcγα + ξγcαβ = 0. (A.1)

We multiply this by ξα to obtain the condition (8.9). There are two possibilities. If ξ2 6= 0

then it follows immediately that the 2-cocycle is exact. That is, H2 = 0. If on the other

hand ξ2 = 0 then there are cocycles which are not exact. One can think of theses as

plane-wave solutions to Maxwell’s equations. We can reformulate the result of Section 8

as a statement of the dependence of the Riemann tensor uniquely on the cohomology:

Curv = Curv[H2]. (A.2)
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[5] M. Burić, T. Grammatikopoulos, J. Madore, and G. Zoupanos, On the fuzzy Kasner metric,

(preprint) – (2005).
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